Transforming and Tumorigenic Activity of JAK2 by Fusion to BCR: Molecular Mechanisms of Action of a Novel BCR-JAK2 Tyrosine-Kinase
نویسندگان
چکیده
Chromosomal translocations in tumors frequently produce fusion genes coding for chimeric proteins with a key role in oncogenesis. Recent reports described a BCR-JAK2 fusion gene in fatal chronic and acute myeloid leukemia, but the functional behavior of the chimeric protein remains uncharacterized. We used fluorescence in situ hybridization and reverse transcription polymerase chain reaction (RT-PCR) assays to describe a BCR-JAK2 fusion gene from a patient with acute lymphoblastic leukemia. The patient has been in complete remission for six years following treatment and autologous transplantation, and minimal residual disease was monitored by real-time RT-PCR. BCR-JAK2 codes for a protein containing the BCR oligomerization domain fused to the JAK2 tyrosine-kinase domain. In vitro analysis of transfected cells showed that BCR-JAK2 is located in the cytoplasm. Transduction of hematopoietic Ba/F3 cells with retroviral vectors carrying BCR-JAK2 induced IL-3-independent cell growth, constitutive activation of the chimeric protein as well as STAT5 phosphorylation and translocation to the nuclei, where Bcl-xL gene expression was elicited. Primary mouse progenitor cells transduced with BCR-JAK2 also showed increased proliferation and survival. Treatment with the JAK2 inhibitor TG101209 abrogated BCR-JAK2 and STAT5 phosphorylation, decreased Bcl-xL expression and triggered apoptosis of transformed Ba/F3 cells. Therefore, BCR-JAK2 is a novel tyrosine-kinase with transforming activity. It deregulates growth factor-dependent proliferation and cell survival, which can be abrogated by the TG101209 inhibitor. Moreover, transformed Ba/F3 cells developed tumors when injected subcutaneously into nude mice, thus proving the tumorigenic capacity of BCR-JAK2 in vivo. Together these findings suggest that adult and pediatric patients with BCR-ABL-negative leukemia and JAK2 overexpression may benefit from targeted therapies.
منابع مشابه
Coexistence of BCR-ABL1 Translocation and JAK2 V617F Mutation in a Patient with Chronic Myeloid Leukemia Under Long-term Treatment with Imatinib and Nilotinib: A Case Report
This report describes an 89-year-old woman diagnosed with Philadelphia positive Chronic Myeloid Leukemia in 2007 who was initially treated with 200 mg/day imatinib. The patient demonstrated complete molecular response (CMR) in two tests in 2015 and 2018. During treatment between 2007 and 2019, despite increased dosage of imatinib and switching her therapy to nilotinib, complete hematological r...
متن کاملSelective JAK2/ABL dual inhibition therapy effectively eliminates TKI-insensitive CML stem/progenitor cells
Imatinib Mesylate (IM) and other tyrosine kinase inhibitor (TKI) therapies have had a major impact on the treatment of chronic myeloid leukemia (CML). However, TKI monotherapy is not curative, with relapse and persistence of leukemic stem cells (LSCs) remaining a challenge. We have recently identified an AHI-1-BCR-ABL-JAK2 protein complex that contributes to the transforming activity of BCR-ABL...
متن کاملErythropoiesis in the absence of janus-kinase 2: BCR-ABL induces red cell formation in JAK2(-/-) hematopoietic progenitors.
The receptor-associated protein tyrosine kinase janus-kinase 2 (JAK2) is essential for normal red cell development and for erythropoietin receptor (EpoR) signaling. JAK2(-/-) embryos are severely deficient in erythropoiesis and die at an early stage of development from fetal anemia. The binding of erythropoietin (Epo) to the EpoR triggers the activation of JAK2, the phosphorylation of the EpoR,...
متن کاملTransformation of an Unclassified Myeloproliferative Neoplasm with a Rare BCR-JAK2 Fusion Transcript Resulting from the Translocation (9;22)(p24;q11)
BCR-ABL1 negative myeloproliferative neoplasms (MPNs) are known to contain alterations of the tyrosine kinase JAK2 (located on 9p24) that result in constitutive activation of the encoded protein. JAK2 fusions are reported in acute and chronic leukemias of myeloid and lymphoid phenotypes. Here, we report an unclassified case of MPN (MPN-U) showing a t(9;22)(p24;q11), which generates a BCR-JAK2 f...
متن کاملBCR-ABL Affects STAT5A and STAT5B Differentially
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors linking extracellular signals to target gene transcription. Hematopoietic cells express two highly conserved STAT5-isoforms (STAT5A/STAT5B), and STAT5 is directly activated by JAK2 downstream of several cytokine receptors and the oncogenic BCR-ABL tyrosine kinase. Using an IL-3-dependent cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012